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Introduction
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YOU

§ What do they have in common?
§ Basic biology to keep them alive and functioning.

§ E.g. Undergoing several different 
biochemical processes such as:
§ Breaking down food

§ Repairing tissues or worn out cells

§ Replicating DNA



Proteins
§ Proteins allow organisms to undergo these basic life processes
§ Need energy from your last food?

§ Proteins build the enzymes used by the digestive system to break down and extract 
nutrients from food.

§ Want to build muscles?
§ Muscles are build from proteins.

§ How can organism stay alive?
§ Proteins form the enzymes need to replicate DNA and replace old and worn out cells.
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Protein-Protein interactions (PPI)
§ Proteins rarely act alone as their functions tend to be regulated

§ Numerous proteins organized by their physical contacts forms molecular 
machines that carries out biological and molecular processes

§ Study of these contacts:
§ Understand biological phenomenon

§ Insights about molecular etiology of diseases

§ Discovery of putative drug targets

§ Contacts between proteins: Protein Protein interactions (PPI)
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Problem
Predict if two proteins interact.
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Amino acid sequence
§ Proteins are made up of smaller units called 

amino acids.
§ Strings of amino acids are arranged in particular 

order.
§ Protein A5Z2X5

MRPAQLLLNTAKKTSGGYKIPVELTPLFLAVGVALCSGTYFT
YKKLRTDETLRLTGNPEL SSLDEVLAKDKD

§ Amino acid sequence is the primary structure of 
the protein.
§ determines the protein’s unique three-dimensional 

shape.
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Previous works

PIPR (Chen et al. 2019)
§ Deep Recurrent Convolutional neural 

network (RCNN) to learn protein 
representation

DPPI (Hashemifar et al. 2018)
§ Deep convolutional neural network 

(CNN) to learn protein representation

§ Doesn’t consider sequential 
information of amino acids
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§ Predict interactions between a pair of protein sequences

§ State-of-the-art methods proposed Siamese network to model the mutual 
influence between proteins.



Challenges
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§ Hard to explain the predictions i.e. lack transparency
§ Computationally expensive approach in Siamese setting

For instance:
§ Human has nearly 20,000 proteins. 

§ Nearly 200 million possible interactions.

§ If processing an interaction takes 1 second, total processing time > 6 years.



Proposed approach
§ Sequence encoder

§ Bidirectional GRU to model contextual and 
sequential properties of amino acids

§ Handles variable length sequences
§ Captures long term dependencies

§ Sparse gating
§ Guides model to selectively focus on specific 

amino acids in the sequence

§ Gaussian embedding
§ Model the uncertainty about the representation of 

amino acid sequences
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Sparse gating mechanism
§ Proteins interact via interface, small region of 

protein structure
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Softmax Sparsemax1 Fusedmax2

• Full support • Sparse weight but distributed • Sparse and contiguous

Sparse 
Gating
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1. From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification, André F. T. Martins, Ramón Fernandez Astudillo, ICML 2016.
2. A Regularized Framework for Sparse and Structured Neural Attention, Niculae, Vlad, and Mathieu Blondel, NeurIPS 2017. 



Experimental setup
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§ Select a batch of 𝑛 protein sequences

§ Encode these sequences to Gaussian distributions

§ Retrieve positive and negative interactions that involve these 𝑛 proteins

§ Minimize the statistical distance between interacting proteins while 
maximizing the distance for noninteracting proteins.



Results
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Table 1: Comparison with the state-of-the-art models



Ablation study
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Table 2: Study of model components on Yeast dataset



Interpretability
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Interpretability: case study
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