## GNE: A deep learning framework for gene network inference by aggregating biological information

#### Kishan K C



Human-Centric Multi-Modal Modeling Lab Golisano College of Computing and Information Sciences Rochester Institute of Technology, New York, USA

## Background

- Gene interaction network is a set of genes (nodes) connected by edges representing functional relationships among these genes.
- Interactions are important to
  - Understand pathways and regulation in model organisms
  - Understand biological functions
  - Provide Insight into complex diseases



Intractable through biological experiments

## Background

- Advancement in measurement technologies => large amount of high-throughput datasets
- Topological properties of gene interaction network
- Guilt by association: allows to discover similar genes but also to infer the properties of unknown ones
- Proposed methods: Isomap (Lei et al. 2012), node2vec (Grover & Leskovec 2016), LINE (Tang et al. 2015)

## Background

- Preserving topological information is not enough
- Some of the genes have no interaction information
- Genes with similar attributes are likely to be related

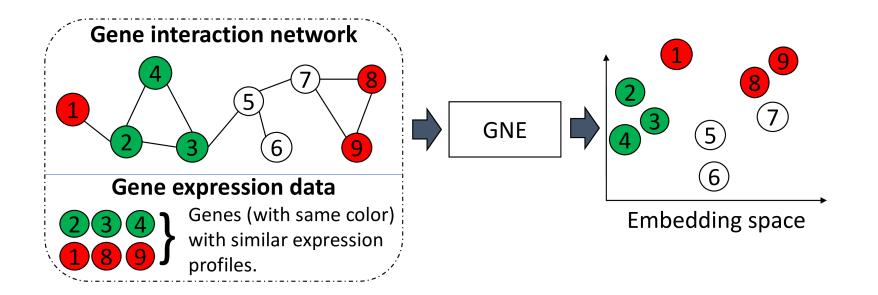
**Our approach:** Integrate topological properties and additional information

### Datasets

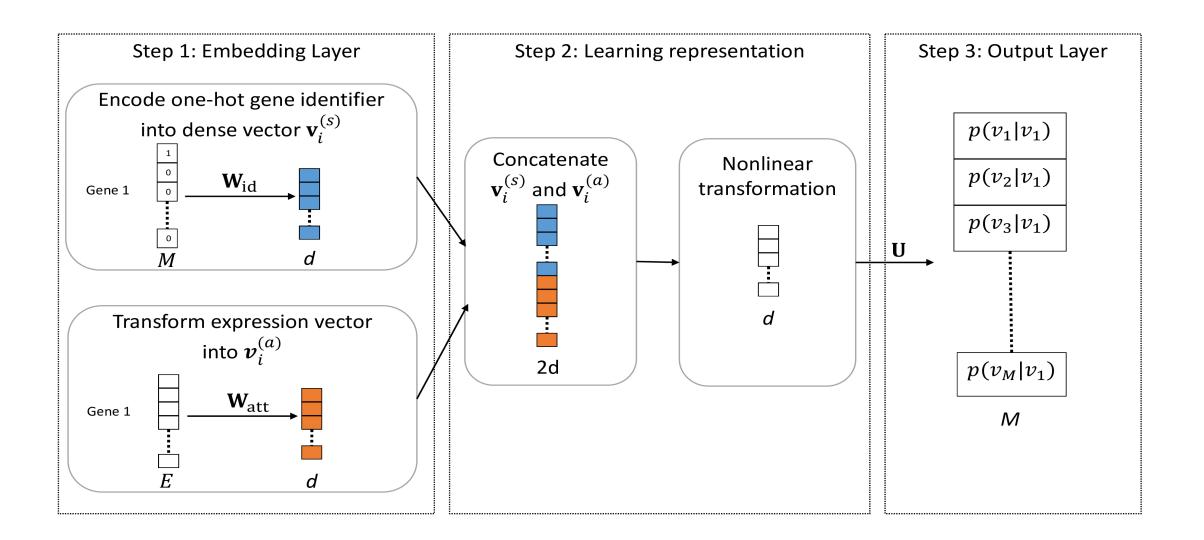
- Interaction dataset from BioGRID database (*Stark et al. 2006*)
- Gene Expression data from the DREAM5 Network Challenge (*Marbach et al. 2012*)
- Operons dataset from the DOOR database (Mao et al. 2008)

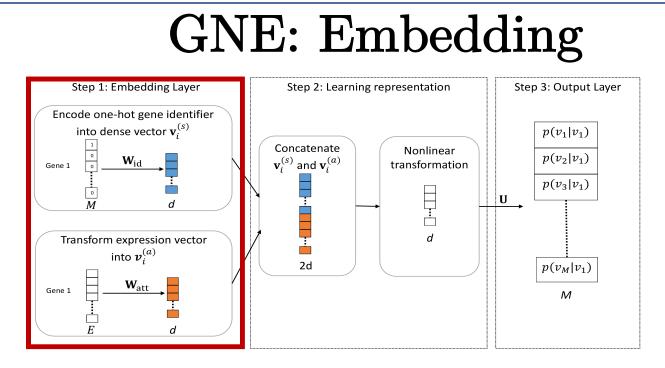
## Gene Network Embedding (GNE)

- A novel deep learning framework to integrate diverse biological information for GI network inference
- Incorporates gene expression data with GI network topological information



## **GNE** Architecture





#### **GNE Network Structure Modeling**

Encode one-hot encoded representation of a gene  $v_i$  via embedding lookup.

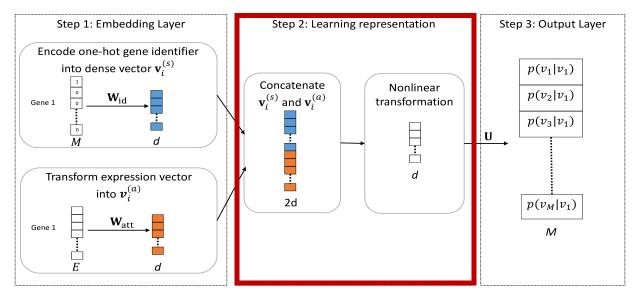
$$\mathbf{v}_i^{(s)} = \mathbf{W}_{id} \, v_i$$

#### **GNE** Expression Modeling

Exponential Linear unit (ELU) to model non-linearity of gene expression  $x_i$  and capture underlying patterns.

$$\mathbf{v}_i^{(a)} = \operatorname{elu}(\mathbf{W}_{att} \cdot x_i)$$

#### **GNE:** Learning representation



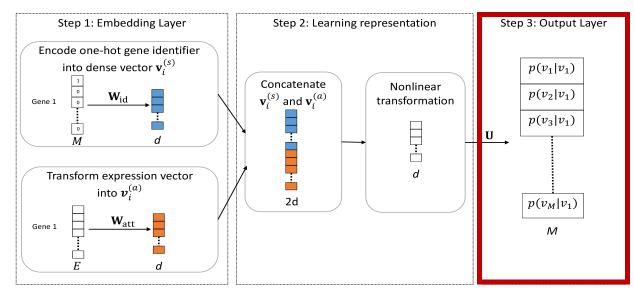
Concatenation of topological and attribute representation

$$\mathbf{v}_i = \begin{bmatrix} \mathbf{v}_i^{(s)} & \lambda \mathbf{v}_i^{(a)} \end{bmatrix}$$

Transformation of concatenated representation via k-hidden layers with hyperbolic tangent activation.

$$\mathbf{h}_i^{(k)} = \delta_k (\mathbf{W}_k \, \mathbf{h}_i^{(k-1)} + b^{(k)})$$

#### **GNE:** Predicting interaction probabilities



Last layer outputs the probability vector which contains conditional probability of all other genes to gene  $v_i$ 

$$\mathbf{o}_i = [p(v_1|v_i), p(v_2|v_i), \dots, p(v_M|v_i)]$$

where

$$p(v_j|v_i) = \frac{\exp(\widetilde{\mathbf{v}}_j \cdot \mathbf{h}_i^{(k)})}{\sum_{j'=1}^M \exp(\widetilde{\mathbf{v}}_{j'} \cdot \mathbf{h}_i^{(k)})}$$

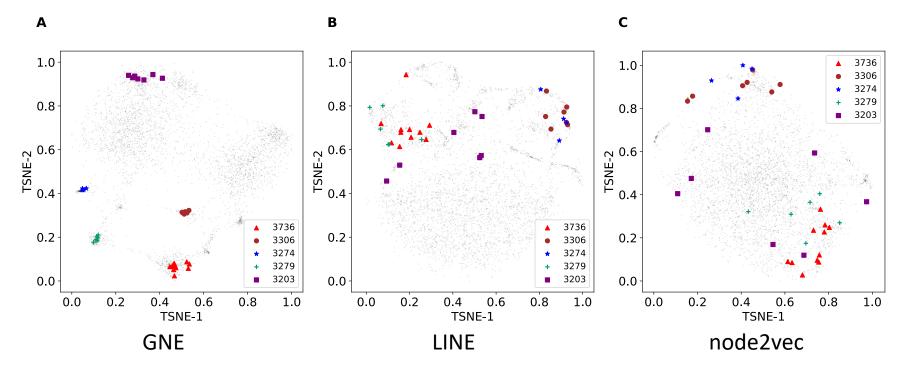
Optimization:

$$\Theta^* = \underset{\Theta}{\operatorname{argmax}} \left[ \sum_{i=1}^{M} \sum_{v_j \in N_i} \log \frac{\exp(\widetilde{\mathbf{v}}_j \cdot \mathbf{h}_i^{(k)})}{\sum_{j'=1}^{M} \exp(\widetilde{\mathbf{v}}_{j'} \cdot \mathbf{h}_i^{(k)})} \right]$$

10

### Visualizing the embeddings

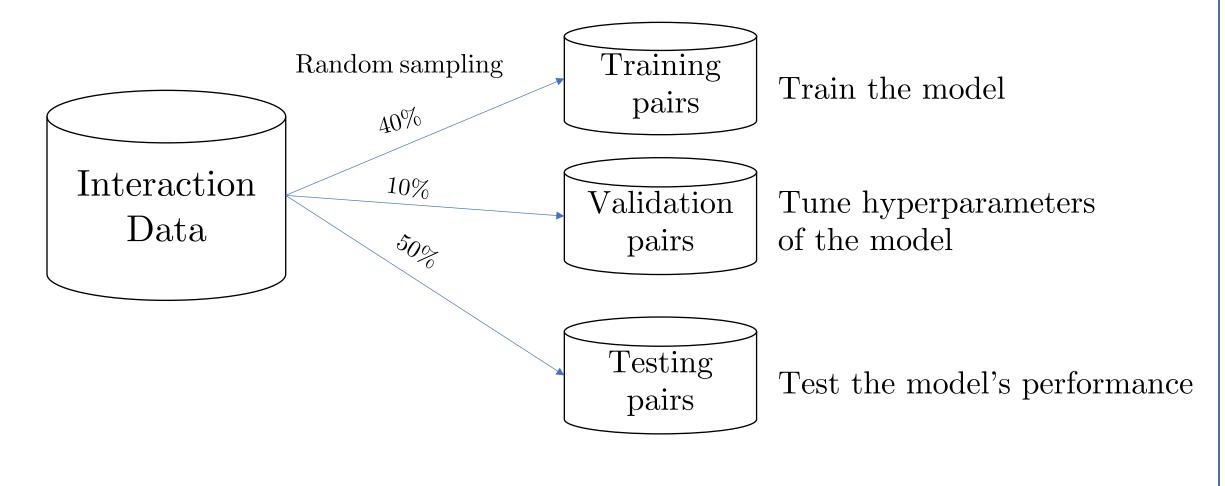
- Visualize embeddings on 2D space using t-SNE package
- **Operons**: genes that interact with each other and are co-regulated.
  - Colored the points in 2D space with operons

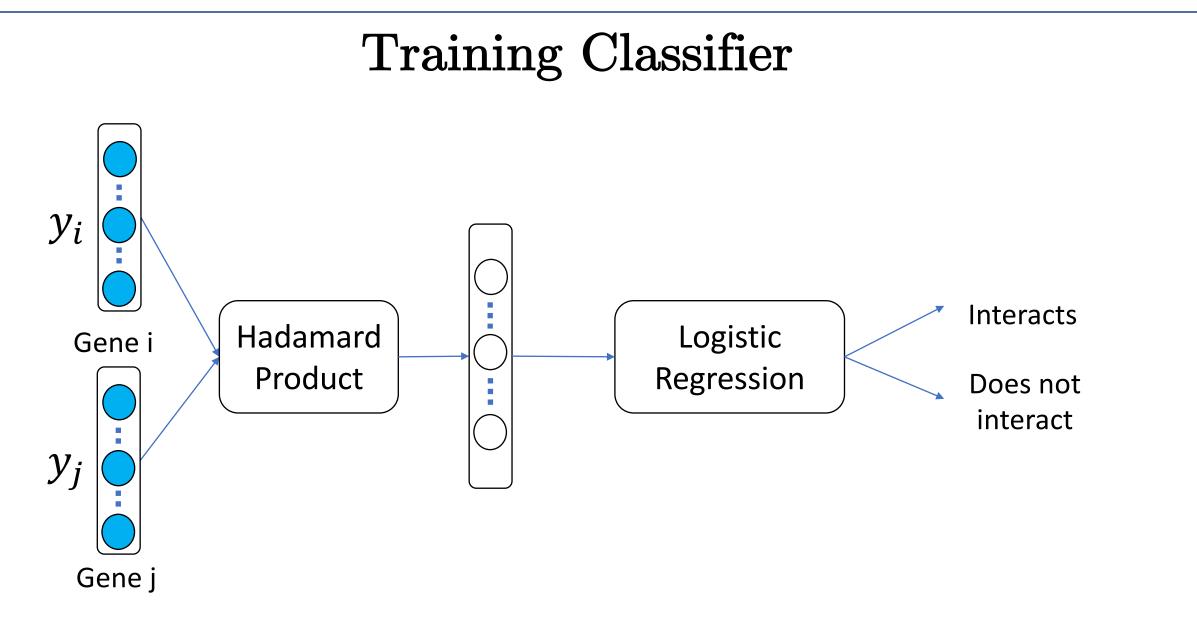


• Significant test to see if genes within same operons are likely to have similar representation

#### Experimental setup

• Splitting data





• Random selection of negative samples

#### Results

• Performance of GNE in predicting missing interactions

|                          | Yeast |       | E. coli |       |
|--------------------------|-------|-------|---------|-------|
| Methods                  | AUROC | AUPR  | AUROC   | AUPR  |
| Correlation              | 0.582 | 0.579 | 0.537   | 0.557 |
| Isomap                   | 0.507 | 0.588 | 0.559   | 0.672 |
| LINE                     | 0.726 | 0.686 | 0.897   | 0.851 |
| node2vec                 | 0.739 | 0.708 | 0.912   | 0.862 |
| $\operatorname{Isomap+}$ | 0.653 | 0.652 | 0.644   | 0.649 |
| LINE+                    | 0.745 | 0.713 | 0.899   | 0.856 |
| ${\rm node2vec}+$        | 0.751 | 0.716 | 0.871   | 0.826 |
| GNE (topology only)      | 0.787 | 0.784 | 0.930   | 0.931 |
| GNE                      | 0.825 | 0.821 | 0.940   | 0.939 |

#### Temporal holdout validation

- Two versions of interaction dataset: 2017 and 2018 version
  - 2018 version has 12,835 new interactions for yeast and 11,185 new interactions for E. coli
- Randomly selected 50% of interactions from 2017 version as training data to predict new interactions in 2018 version

| Methods  | Yeast |       | E. coli |       |  |
|----------|-------|-------|---------|-------|--|
|          | AUROC | AUPR  | AUROC   | AUPR  |  |
| LINE     | 0.620 | 0.611 | 0.569   | 0.598 |  |
| node2vec | 0.640 | 0.609 | 0.587   | 0.599 |  |
| GNE      | 0.710 | 0.683 | 0.653   | 0.658 |  |

### GNE's predictions

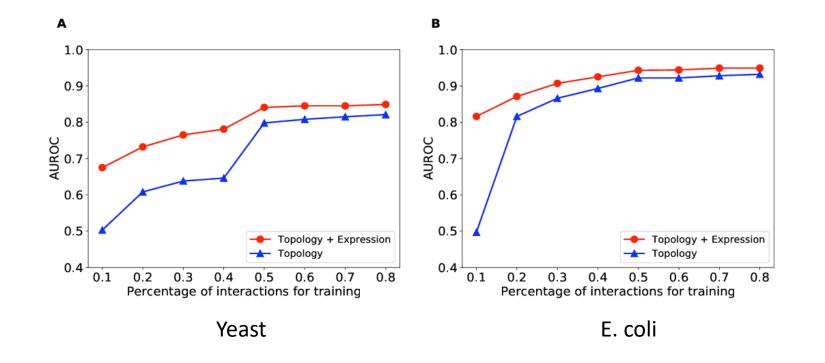
- Trained GNE with and without expression data
- Improved predictions with expression data

|         | Probability |                                   |        |        |                                   |  |
|---------|-------------|-----------------------------------|--------|--------|-----------------------------------|--|
| Dataset | Topology    | ${f Topology}\ +\ {f Expression}$ | Gene i | Gene j | Experimental Evidence code        |  |
|         | 0.287       | 0.677                             | TFC8   | DHH1   | Affinity Capture-RNA <sup>1</sup> |  |
| Yeast   | 0.394       | 0.730                             | SYH1   | DHH1   | Affinity Capture-RNA <sup>1</sup> |  |
|         | 0.413       | 0.746                             | CPR7   | DHH1   | Affinity Capture-RNA <sup>1</sup> |  |
| E. coli | 0.014       | 0.944                             | ATPB   | RFBC   | Affinity Capture- $MS^2$          |  |
|         | 0.012       | 0.941                             | NARQ   | CYDB   | Affinity Capture-MS <sup>2</sup>  |  |
|         | 0.013       | 0.937                             | PCNB   | PAND   | Affinity Capture- $MS^2$          |  |

<sup>1</sup>Miller, J. E. et al. 2018 <sup>2</sup>Babu, M. et al. 2018

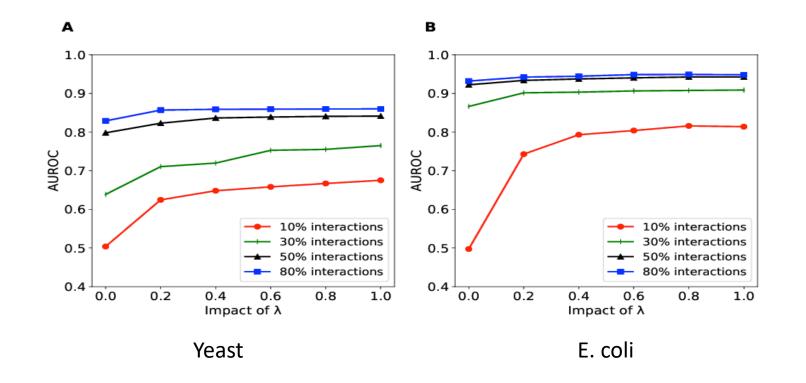
### Impact of network sparsity

- Hold out 10% interactions as test dataset
- Change the sparsity of training data by randomly removing a portion of remaining interactions
- Evaluation with and without expression data



#### Impact of $\lambda$

- Evaluation of parameter  $\lambda$  to see the impact on model's performance
- Values of  $\lambda$  used in experiment: [0, 0.2, 0.4, 0.6, 0.8, 1, 10, 100, 1000]



## Conclusion

- GNE models the complex statistical relationships between gene interaction network and expression data.
- GNE extracts features that are more informative for interaction prediction.
- GNE allows the addition of different types of attributes.

## Acknowledgements

#### Co-authors

- Rui Li
- Feng Cui
- Qi Yu
- Anne R. Haake

#### Funding





# Thanks