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GNE: A deep learning framework for gene network 
inference by aggregating biological information

Ø Understanding functional aspects of genes or proteins is crucial to
provide insights into underlying biological phenomena for different health
and disease conditions.

Ø Often intractable through biological experiments.
Ø Topological landscape of gene interactions provides the support for

understanding such phenomena.
Ø Sparse connectivity between the genes
Ø We propose Gene Network Embedding (GNE), a deep neural network

architecture to learn lower dimensional representation for each gene, by
integrating the topological properties of gene interaction network with
additional information such as expression data.

Ø Outperforms strong baselines.

Overview

Overview of  GNE

This material is based upon work supported by National Science under Grant NSF-
1062422.

Gene Network Embedding (GNE)

Ø Node represents a gene and edges represent the interactions with other genes.

Given a gene network denoted as ! = ($, &, '), gene network embedding
aims to learn a function ) that maps gene network structure and their attribute
information to a *-dimensional space where a gene is represented by a vector
+, - ℝ* where * ≪ 0. The low dimensional vectors +, and +1 for genes 2,
and 21 preserve their relationships in terms of the network topological
structure and attribute proximity.
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Methods
Yeast E. coli

AUROC AUPR AUROC AUPR
Correlation 0.582 0.579 0.537 0.557

Isomap 0.507 0.588 0.559 0.672
LINE 0.726 0.686 0.897 0.851

node2vec 0.739 0.708 0.912 0.862

Isomap+ 0.653 0.652 0.644 0.649
LINE+ 0.745 0.713 0.899 0.856

node2vec+ 0.751 0.716 0.871 0.826

GNE (topology only) 0.787 0.784 0.930 0.931
GNE 0.825 0.821 0.940 0.939

Methods
Yeast E. coli

AUROC AUPR AUROC AUPR
LINE 0.620 0.611 0.569 0.598

node2vec 0.640 0.609 0.587 0.599
GNE 0.710 0.683 0.653 0.658

Qualitative results

Quantitative results

ØAUROC comparison shows that GNE outperforms other strong baselines.

Sensitivity Analysis

Dataset
Probability

Gene 3 Gene 4 Experimental 
Evidence codeTopology Topology + 

Expression

Yeast
0.287 0.677 TFC8 DHH1 Affinity Capture-RNA
0.394 0.730 SYH1 DHH1 Affinity Capture-RNA
0.413 0.746 CPR7 DHH1 Affinity Capture-RNA

E. coli
0.014 0.944 ATPB RFBC Affinity Capture-MS
0.012 0.941 NARQ CYDB Affinity Capture-MS
0.013 0.937 PCNB PAND Affinity Capture-MS

Ø Integration of expression data with
topological properties improves the
performance.

ØNo significant improvement when
number of (training) interactions
increases (> 50%).

Yeast E. coli

ØModels the complex statistical relationship between topological properties and
expression data via nonlinear transformation of fused representation.

ØOur method learns similar representation for genes within same operon.

ØTwo-sample KS test shows that genes within the same operon have significantly
similar vector representation than expected by chance.

GNE LINE node2vec

ØTemporal holdout validation with two versions of  interaction data: 2017 and 
2018 version

ØModel trained on 2017 version and tested on 2018 version

ØLearned embeddings is projected into 2D space using t-SNE package for
visualization.

ØPredicts gene interactions more accurately
Ø Integration of expression data improves the interaction prediction.

Yeast E. coli

Assuming a gene network with expression data as node attributes:
1. Obtain dense representation 2, 5 of  topological properties of  a gene through  

topological encoder
2. Obtain expression representation 2, 6 of  a gene by passing expression data 

through expression encoder
3. Get the joint representation 2, 5 + 82, 6

4. Transform  the representations using nonlinear layers
5. Predict probability of interactions
6. Update the parameters of encoders, hidden layers by applying gradient descent

to optimize maximum likelihood loss

Result on interaction prediction

Temporal Holdout Validation

github.com/kckishan/GNE Access paper from bioRxiv kishan_kc07


